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Two kinds of special surface elements, curvilinear tube element and triangular element with negative
parts, are proposed for modeling solids containing many slender open-ended tubular shaped holes in
the framework of boundary face method. The surfaces of each tubular hole in the solid are modeled by
the tube elements, and the outer surfaces that intersected and trimmed by the holes are modeled by
triangular elements with negative parts. Substantial savings in both modeling effort and computational
cost have been achieved. In addition, all the special surface elements are defined in the parametric
space of the surface, and the exact geometry data are obtained directly from a CAD model of the solid.
Therefore, automatic analysis is possible. Several numerical examples are presented to demonstrate the

efficiency and accuracy of the proposed method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of calculating the displacement and stress field in
elastic solids containing many small holes is of considerable
interest in engineering. For instance, in construction process of
concrete dams many slender holes are designed as cooling
passages. And these small holes can significantly change the
stress distribution in dams. The analysis of solids with small
holes is still a difficult task by finite element method (FEM), as the
FEM requires a very fine mesh to make sure the accuracy of the
result. Usually, very large amount of modeling efforts are neces-
sary for mesh generation in a body with many small holes,
especially when the holes are very small in size.

Compared to the finite element method, the boundary element
method is more suitable for this task. Because the BEM can reduce
the dimensionality of the problem, and only need to mesh the
surface of the domain. A number of boundary element methods
have been developed and implemented for heat conduction and
elastic stress analysis of the solids with small holes and fibers [1-7].
The method developed by Henry, Banerjee and Chatterjee [1-5]
proposed a boundary element formulation for the efficient modeling
and analysis of tubular holes, reducing both the amount of data
and computational cost of conventional BEM formulation. The
variations in the circumferential direction of the hole are repre-
sented in terms of a trigonometric shape function together with
a linear or quadratic variation in the longitudinal direction. The
resulting integrals are treated semi-analytically. Federico proposed
a boundary element formulation using a single special hole
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element for modeling two-dimensional microstructures containing
cylindrical voids. And a family of hole elements with 3, 4, 5 and
6 nodes is presented [7].

In the present paper the boundary face method (BFM) [8] is
introduced to readily analyze elastic problem of three-dimen-
sional solids with small tubular shaped holes of free shape. The
BFM is implemented directly based on the boundary representa-
tion data structure (B-rep) that is used in most CAD packages for
geometry modeling. Each bounding surface of geometry model is
represented as parametric form by the geometric map between
the parametric space and the physical space. Both boundary
integration and variable approximation are performed in the
parametric space. The integrand quantities are calculated directly
from the faces rather than from elements, and thus no geometric
error will be introduced [9]. The hole with complex geometries,
such as the sharp variation of the curvature along its length and
the arbitrary shaped cross section, can be easily represented by
BFM. Thus, our method not only can analyze the straight cylind-
rical holes but also the hole of free shapes.

We present a tube element and a triangular element with
negative parts to model the surface of the problem domain with
open-ended tubular holes. These holes can be modeled by special
tube elements. Therefore the discretization of the surface is very
simple, resulting in substantial savings in both data preparation
and computing costs. In the previous work, those methods used
for this problem treated solid and holes as separate regions and
the ends of the hole are closed by a circular disc. However, in our
method with these special surface elements the solid and holes
are modeled as one region. These holes are open-ended, and
intersect the outer surface of the body. So, our method can reduce
both the modeling and computational task significantly with
using these two Special surface elements.
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In this work, both the integrals over the surfaces of the holes
and the surfaces of the domains are computed numerically
different from semi-analytically as in the previous works. The
numerical evaluation of the boundary integrals plays a key role in
the implementation of the BFM. Therefore, special treatments of
the integrals with nearly singularities and singularities are
designed, which will be discussed in the following section of
this paper.

In the following sections, Section 2 describes the boundary
integral equation formulation for elastic stress analysis with
open-ended tubular holes. Special surface elements for modeling
open-ended tubular holes are described in Section 3. In Section 4,
the issues for numerical integrations are discussed. Several
numerical examples are provided in Section 5. And the paper
ends with conclusions in Section 6.

2. Boundary integral equation formulation with open-ended
tubular holes

The BFM is a new implementation of the boundary node
method (BNM) or BEM [8-13]. For the method, the boundary
consists of a set of surfaces with parametric representation and
the field variable approximation is performed in parametric space
of each surface. The parametric surface is discretized by surface
elements in parametric space. These elements are used for the
boundary integration and variable approximation. The details of
the implementation for the BFM can be found in Refs. [8,9].

The self-regular BIE for elastic stress analysis of a body
containing open-ended tubular holes can be expressed as

0=1241" 41" M
where
I°= /r s —u)TE.Y)-tSUEYIArs) 2)
M
F= 37 [ s -um) Ty -t Uy 3)
m=1v4m
K .
=3 [ e -um) Ty -t Uy )
k=1""k
in which:

u and t are boundary displacement and traction;

y is the source point and s is the field point on the boundary;

U and T are the fundamental solutions of the 3D elastic
problems;

'l is the surface of the mth hole;

I'} is the kth special element with negative parts created by
open-ended holes;

I° is the out surface of the body exception for the special
elements;

I° denotes the integrals over the I'°;

M and IV denote the integrals over the summation of the I'fl
and I'}, respectively;

M and K are the total number of the holes and the elements
with negative parts, respectively.

The boundary element discretization of this problem in the
conventional manner requires a very fine mesh about the hole.
In this work, the discretization of the solid with small holes is
very simple, because an efficient boundary face element with
special surface elements is introduced for the efficient modeling
and analysis of the holes. The geometric information of the hole is
directly derived from its parametric surface of its CAD model [9].
This is a distinguishing advantage over the BEM, in which the

surface elements are defined in physical space, and the hole is
approximated by those elements.

In the previous work, the hole element is closed at the end by a
circular disc and those method used for this problem treated
solids and holes as separate regions. The hole concerned in this
paper is open-ended, and intersects the outer surface of the body.
The treatment for this type of hole is troublesome and unecono-
mical in the BEM, and so far no literatures are found about dealing
with those holes. The boundary face method is introduced in this
paper for the efficient modeling and analysis of holes using
boundary elements with negative parts created by open-ended
holes. The special surface elements will be described in the next
section.

3. Special surface elements for modeling of open-ended
tubular holes

As mentioned previously, the hole which is open-ended and
intersects the outer surface of the body can be efficient modeled
and analysis by using the slender tube element and the special
triangular element with negative parts. In this section, the tube
element and the special triangular element with negative parts
are detailed described.

3.1. Tube element

In previous work, the holes are modeled in three-dimensional
space using ‘hole elements’ with a prescribed radius. The holes
assume a variation in the displacement field about the circum-
ference defined by a trigonometric function, and a linear or
quadratic variation is assumed along its length [1]. However,
a hole is represented exactly by several tube elements in our
work, not approximated with hole elements. The hole is described
by slender surface elements in parametric space. This kind
element is referred to as ‘tube element’ here, which is different
from the ‘hole element’ mentioned in previous work. A slender
hole modeled with four tube elements is shown in Fig. 1. Each
tube element is composed of four isoparametric lines in the
parametric coordinate (u, v) of the surface as illustrated in
Fig. 2(a). In the space, v is along tube’s longitudinal direction,
while u is along the circumferential direction taking a value from
0 to2m.

To perform numerical integration, the following linear trans-
formation is applied to mapping a tube element into a normalized
space denoted by the local coordinate system (¢, 7).

&= (u-up)/a
{n:(v—vo)/b &nel0,1] 5
where

Up = (U +1y)/2 a=(ux—uy)/2
Vo = (V1 +12)/2 b=wy-v1)/2

A type of the discontinuous tube elements is used. The
interpolating nodes are not shared in neighbor elements, thus
the variation of approximated field variable is discontinuous
among these elements. For each element, interpolating nodes
are symmetrically distributed inside it, as showed in Fig. 2(c).
There is an offset between each node and the associated element

Fig. 1. A hole modeled by four tube elements.
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Fig. 2. A tube element, ‘O’ denotes an element vertex and ‘e’denotes an interpolating node. (a) Element in physical space; (b) Element in parametric space of the surface;

(c) Element mapped into a local coordinate system.

vertex. And the location of the node is determined by two offset
parameters, o and a,. In this paper, o; and «; are specified as 1/3
and 1/4, respectively. As in Ref. [1], the resulting displacements
are described by using a trigonometric circular shape function in
the circumferential direction and a curvilinear shape function of
any order in the longitudinal direction. In the circumferential
direction, the following transformation from & to u is required for
using the circular shape functions in Ref. [1].
21 (E+1.0) =©

=Tm 3 ®

Using this transformation, the circular shape functions can be
expressed as

MOu) = % + 2 cosu

3
twe e Bnu L
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In the longitudinal direction, if a quadratic variation is taken,
the shape functions are represented as

N° = —0.55(1—p)
N'=05p8(1+p)

N? =(1+p)(1-p) ®
where
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As in Ref. [2], the displacement on the hole varies in the
longitudinal as well as circumferential direction. The displace-
ment variations can be expressed as

u=M*(S)N’(s)u*’ 9

After dividing the mth hole into Ny, number of tube elements
together with using the shape functions mentioned above, Eq. (3)
can be discretized as

Nm
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in which the subscripts mi is used to denote the ith tube element
over the mth hole, u*” and t*” are nodal values of displacements
and tractions on the surface of the tube element. Summation over
o and y is implied. « ranges from 1 to the number of nodes in
circumferential direction, and y ranges from 1 to the number of
nodes along the longitudinal direction of the hole.

It should be noticed that no geometric approximation is
performed in Eq. (10). For obtaining exact geometry, at first we
obtain the surface parametric coordinates u and v from local
integration points using Eq. (5), and then the geometric data is
directly calculated from the parametric surface with the para-
meters: u and v. The calculation is completed using the para-
metric formulation of the surface, which is available from its
B-rep data of the CAD model.

3.2. Triangular elements with negative parts

In the present work, the hole is open-ended and intersects the
outer surface of the body, so the surface is trimmed with small
holes. The boundary element discretization of this problem in the
conventional method requires a very fine mesh about the hole.
To avoid using a fine mesh to describe each hole, a class of new
discontinuous triangular elements with negative parts is devel-
oped in this section. The local region of the surface around the
hole can be meshed with a fewer of those elements instead of a
large number of traditional elements, as shown in Fig. 3. The hole
is decomposed as several negative parts, which are located at the
corners of the triangular elements with negative parts. The radius
of a negative part is equal to the radius of the hole. The center of
the hole is coincident with one of the vertices of those elements.
Before mesh generation, all centers of the holes are set as hard
points, which are the locations of the nodes of the final mesh. The
task of meshing the surface with hard points can be completed in
an easy manner with existing meshing techniques. This is why
the negative parts are located at the corners of the elements, not
inside them. In the case where a large number of holes are
present, the elements with negative parts can be generated much
more efficiently than the traditional method.

Fig. 4 shows a triangular element with two negative parts in
different spaces. The small negative parts are not drawn in
Figs. 4(b) and 4(c). The element is defined in the surface parametric
space (u, v) by three or six vertices with parametric coordinates as
shown in Fig. 4(b). And Fig. 4(c) depicts the element in the local
coordinate system (&, #) mapped from the space (u, v). If there are
three vertices employed, the following mapping is used from the
space (&, 1) to (u, v).

3
u= Zd)i(ivn)ui

i=1

3
v="> ¢ &mu;

i=1

an

in which ¢, =¢&, ¢, =7 and ¢; =1-¢—». Naturally, when six
vertices are involved, the quadratic functions of ¢; can be available,
where i from 1 to 6.
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Fig. 3. The two type of meshes for the surface with five small holes. (a) Triangular elements with negative parts. (b) Traditional triangular elements.
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Fig. 4. A triangular element with negative parts. (a) Element in physical space. (b) Element in parametric space of the surface. (c) Element mapped into a local coordinate

system.

Three interpolating nodes are used for linear interpolation
of field variables. These nodes are located at midlines of the
triangular element. An offset from the associated element vertex
is taken to locate each node, and the node location is determined
by an offset parameter A. These three nodes are shown in
Fig. 4(c) with indices of 1, 2, and 3. The local coordinates of the
nodes are set by (1-2,0.57), (0.5, 1-1) and (0.54, 0.51), respec-
tively. 4 is constrained as the interval (0.1, 0.4) based on our
experience. / is specified as 0.3 in this paper. The triangular patch
constructed with the inner nodes is similar to the triangular
element. Thus, the linear interpolating shape functions associated
with three interpolating nodes can be expressed as

1
T 1-154

o' = (£-0.57)
1

9* = 757 (1-054)

(p3

1
= 155;(1-E-1-052) (12)
Similarly, the quadratic shape functions with six nodes can be

easily obtained as

@' =a2a-1)

@* =b(2b-1)

@> =(1-a—b)2(1—a—b)-1)

@* = 4ab

@° = 4b(1—a—b)

¢@® =4a(1-a—b) (13)

in which a= —5;(¢-0.52) and b= —15;(#—0.54). The locations
and indices of the six nodes are also shown in Fig. 4(c).

Using the shape functions mentioned above, Eq. (4) for the kth
element with Ny number of negative parts can be expressed as

I = /F [TV (9)—¢" @ ~Us.y)¢ ()71 (5)

Nk
=3 [ T6¥@ - W -Usyg/ s (14
i=1714i

where the subscripts s and i refer to the region of the whole
element and the region of the ith negative part of the element,
respectively, u” and t” are nodal values of displacements and
tractions on the surface of the element. Summation over y is
implied, where y ranges from 1 to the number of the nodes in the
kth element.

In Eq. (14), at first, the initial integrals over the whole
triangular element are computed. Then, the final integrals over
the surface region on the element are calculated by subtracting
the integrals in all negative parts from the initial integrals. In the
computing process, the same shapes functions from Egs. (12) or
(13) are used.

4. Numerical integration of the coefficient matrix

The accuracy of the BFM is critically depending on the correct
evaluation of boundary integrals. In this work, all regular integrals
of the formulation are evaluated numerically using the regular
Gaussian integration. The non-regular integrals may present various
degrees of singularity, and they are treated as follows.

When y and s belong to different element, they can still be very
close to each other. Then, the integrals on the right hand side of
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Eq. (14) become nearly singular. We have developed an adaptive
integration scheme based on adaptive element subdivision
method to calculate nearly singular integrals. The details of this
method can be found in Refs. [8,9].

The term with T(s, y) on the right hand side of Eq. (14) contains
strongly singular kernels, which are calculated in an indirect way
by using the rigid body displacement technique. The term with
U(s, y) on the right hand side of Eq. (14) becomes a weakly
singular integral when y and s belongs to a same element.

To calculate the weakly singularity integral, we have developed
a new coordinate transformation based on a triangle, and the
details of the method can be found in Ref. [9]. Before using this
technique, the element under integration has to be subdivided into
several triangles. In the case where a regular quadrilateral element
is involved and the source point y is located at the center of the
element, the element will be divided into four nearly equilateral
triangles. This subdivision is reasonable for obtaining accurate
numerical integrals over the whole element.

However, in the cases where the element is very irregular or
the source point is close to the edges of the element. The above
subdivision is no longer suitable. In these cases, the element is
divided into several triangles and additional quadrangles. For
each triangle, the singular integrals are calculated by using the
mentioned coordinate transformation, while for the quadrangles,
nearly singular integrals are calculated by the adaptive integration
scheme [9]. The subdivision is implemented by the following three
steps.

e First, compute the arc lengths of the parametric lines form the
source point y to each edge of the element and obtain the
minimum length d, in the real-world-coordinate system.

e Then, based on d, we construct a rectangular box in the
element local coordinate system, but with possibly the square
shape in the real-word-coordinate system, and resulting in y at
the center of the box.

e Finally, triangles are constructed from the box and additional
quadrangles are created from the remained region of the
element.

Applying the above strategy, subdivisions of three different
kinds of cases are shown in Fig. 5. We can see that the subdivision
of each case is dependent on the element shape and the location
of the source point. The subdivision of a slender tube element is
similar to that shown in Fig. 5(b) or Fig. 5(c), regarding to the
location of source point.

For discontinuous triangular elements, we also have developed
a special subdivision scheme. The subdivision is carried out based
on two general cases. In the first case, the source point is close to
a corner of the element. In the second case, the source point is
close to the middle of an element edge. Fig. 6(a) and (b) show the
subdivisions of the same element in these two cases, respectively.
The whole element is divided into several triangles depending on
the location of the source point. Over the triangles with a vertex
of the source point, weakly singular integrals are calculated by the

a b

Fig. 5. Subdivisions of three quadrilateral elements. (a) A square element with
source point near its corner. (b) A slender element with source point near its
center. (¢) A much slender element with source point near its corner.

coordinate transformation technique [9]. For the others, the
integration is performed by the adaptive subdivision scheme [9].

5. Numerical applications

In this section, in order to assess the efficiency and accuracy of
the proposed method some numerical examples are presented.

5.1. Block with a hole

The first example is a block with a cylindrical hole. It is used to
demonstrate the capacity of capturing the stress concentration of
the proposed method. It is a 10 x 10 x 4 block with an open-
ended cylindrical hole. The slender hole is vertical to the bottom
face z=0 of the block. The central line of the hole passes through
the block’s center with coordinates (5, 5, 2). Two kinds of cases of
the problems are handled regarding to different diameter of
the hole.

In the first case, the diameter is taken as 0.4. The Young's
modulus is 10,000 and the Poisson’s ratio is 0.25. The block is
submitted to uniform traction of 100.0 with the face y=10 and it is
supported with the face y=0, as shown in Fig. 7. This problem is
solved by the proposed method. For comparison, the traditional BFM
without new proposed elements is also carried out for the same
problem. The BFM boundary meshes with proposed elements are
shown in Fig. 8. Fig. 9 shows the meshes used in the traditional BFM.
We can see that the mesh of the proposed method is much simpler
than the mesh used in the traditional BFM.

All computations have been performed in the same integration
schemes. In each computation, the numerical results of stress in
three dimensions at the internal locations are evaluated. These
locations are uniformly distributed on the line with ends (0.223,
5, 2) and (4.79, 5, 2), as shown in Fig. 7. All results are shown in
Figs. 10 and 11. Fig. 10 shows the displacement component in x
coordinate axis at internal locations calculated by these two
methods. Fig. 11 shows the actual stress concentration up to a
point close to surface of the hole is in very good agreement with
those obtained by the traditional BFM. The variation of the stress
and displacement obtained by the BFM with new proposed
elements is in excellent agreement with that of the traditional
BFM. In the present method, the total numbers of elements and

Fig. 6. Subdivisions of a triangular element. (a) Source point near an element
corner. (b) Source point near the middle of an element edge.
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Fig. 7. Boundary conditions of the block.
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Fig. 8. BFM meshes with proposed elements for a block with a hole. (a) Overall boundary meshes with the number of elements 293. (b) The hole modeled with only two

tube elements.
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Fig. 9. BFM meshes with traditional elements for a block with a single hole. (a) Overall boundary meshes with the number of elements 1032. (b) The hole modeled with

traditional elements.
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Fig. 10. Variation in displacement component in x coordinate axis at internal
locations for a block with a hole of diameter 0.4.

nodes are 293 and 885, respectively, while in traditional method
the related numbers up to 1032 and 3096, respectively.

In the second case, the diameter of the hole is specified as a
small value 0.1, compared with the side length of the bock. This
case is used to demonstrate the capacity of dealing with hole with
very small radius. The boundary condition of this case is the same
as the first case. In this case, the boundary mesh of the present
method is the same as the first case. However, in traditional
method the total numbers of elements and nodes are increase to
2146 and 6438. Again, the results at internal locations are
calculated. These locations are uniformly distributed on the line
with ends (0.223, 5, 2) and (4.94, 5, 2). All results are shown in
Fig. 12. It is found that the same level of the accuracy is obtained

300 T T T T T T T T T T
250 4 traditional BFM without new elements |
= g BFMwith new elements
LI BFM with new elements
200 =0, BFM with new elements g

150 + J -

100 4

Stress

-

50 1 _ 3

Fig. 11. Variation in stress at internal locations for a block with a hole of
diameter 0.4.

by the present method, in which fewer elements are used when
compared with the traditional methods.

5.2. Block with multiple holes

The second example consists of a 10 x 10 x 4 block with five
open-ended cylindrical holes, as shown in Fig. 13. The diameters
of all the holes are set as 0.4. This example is considered here to
show the advantage of our method in modeling of structures
containing many open-ended tubular holes.

The boundary condition of this case is the same as the first
example, as shown in Fig. 7. This problem is solved by the
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Fig. 12. Variation in stress at internal locations for a block with a hole of
diameter 0.1.

Fig. 13. (a) Meshes with proposed elements with the number of elements 301.
(b) Meshes with traditional elements with the number of elements 4052.
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Fig. 14. Variation in stress at internal locations for a block with 5 holes of
diameter 0.4.

proposed method and the traditional BFM without new proposed
elements. The boundary meshes with proposed elements and the
meshes used in the traditional BFM are shown in Fig. 13. For this
example, we can see that the mesh of our method is much simpler
than the mesh used in the traditional BFM. Therefore, the
proposed method is much more efficient than the traditional
BFM while there are more holes.

The results at the internal locations are calculated. All results
are shown in Fig. 14. In the present method, the total numbers of

300 T . T r - - - r T - :
Abaqus T
2504 | ® o BFMwith 933 nodes r .
® o BFMwith 933 nodes
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2004 | O BFMwith 933 nodes / 1
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Fig. 15. Variation in stress at internal locations for a block with 5 holes of
diameter 0.4.

elements and nodes are 301 and 933, respectively, while in
traditional method the related numbers up to 4052 and 12,156,
respectively. Even if the number of elements of the traditional
method is 13 times more than the proposed method, the variation
of the stress obtained by the BFM used new proposed elements is
in excellent agreement with that of the traditional BFM.

In order to assess the accuracy of the proposed method, the
results calculated by our method are compared to the results
calculated by Abaqus. The results of stress at the internal locations
are evaluated. These locations are uniformly distributed on the line
with ends (0, 5, 2) and (4.8, 5, 2). In Abaqus, in order to accurately
capture the stress concentration, 65,820 quadratic hexahedron
elements and 280,429 nodes are used. All results are shown in
Fig. 15. We can see that the variation of the stress obtained by the
BFM with new proposed method is in excellent agreement with the
results obtained by Abaqus. And the actual stress concentration at
a point close to the surface of the hole is in very good agreement
with those obtained by Abaqus.

5.3. Block with multiple holes of arbitrary shape

The third example is a 10 x 10 x 10 block with 64 open-ended
cylindrical holes of arbitrary shape, as shown in Fig. 16(a). This
example is more geometrically complicated. It is considered here
to show the advantage of our method in modeling of structures
containing many open-ended tubular holes of arbitrary shape.
The BFM boundary meshes with proposed elements are shown in
Fig. 16(b). Surfaces of this complicated structure are discretized
with only 1980 boundary elements and 7860 nodes. Three slender
tube elements are used for each tube. It is very difficult to obtain a
reasonable discretization with domain elements used in the FEM
for this example. Much effort is also required to discretize all
surfaces with high quality boundary elements used in the tradi-
tional BFM. And much more elements are used by the traditional
BFM. However, it is very easy to describe tubular holes and their
ends with proposed elements.

In this example, the Young’s modulus is 1 and the Poisson’s
ratio is 0.25. The elastic stress problems are solved in which
the essential boundary conditions are imposed on all faces
corresponding to a cubic exact solution. And this solution is
expressed as:

Uy = —2x% +3y* +32°
uy =3x% + -2y +32
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Fig. 16. (a) A block with 64 open-ended cylindrical holes; (b) BFM meshes with
proposed elements.
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Fig. 17. Variation in stress at internal locations for a block with 64 open-ended
cylindrical holes of arbitrary shape.
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Fig. 18. Variation in von Mises stress along the specified isoline on a tubular hole.

U, =3x%+3y* + 222 (15)

The numerical results of stress in three dimensions at the
internal location are evaluated. These locations are uniformly
distributed on the line segment from (0.223, 5, 5) to (4.9, 5, 5).
The numerical results together with exact solutions of the stress
are shown in Fig. 17. Even if there are many holes of arbitrary

shape, the numerical results are still in good agreement with the
exact solutions.

In addition, boundary locations are also used as evaluation
points. These locations are uniformly spaced on the isoparamertic
line segments from (0.5, 0.05) to (0.5, 0.95) of a hole surface, for
which two coordinate parameters u and v are set in the interval
[0,1]. Fig. 18 shows the numerical results of Mises stress at the
boundary locations. It is observed that numerical results are in
excellent agreement with the exact solution. Even if the points
are close to the tube end, the results are also very precise. We can
see that the elements with negative parts around the tube ends
can be used to represent the end of the holes reasonably and
effectively.

6. Conclusions

A boundary face method with an effective numerical model for
elastic stress analysis of solids with small open-ended tubular
holes has been presented in this paper. Two types of special
surface elements have been proposed to represent these holes
efficiently. A free shaped hole has been represented by several
tube elements, and the end faces of the hole have been modeled
by several special triangular elements with negative parts. So the
discretization of the domain is much simpler than the conven-
tional BFM. Therefore, the amount of data and computational cost
are considerably reduced. The BFM is implemented, thus no
geometric error has been introduced. We have also developed
special schemes for numerical integration over very irregular tube
elements.

The accuracy and efficiency have been verified through several
examples. The local stress concentration can be captured accu-
rately by our method. It also shown that the free shaped tubular
holes can be exactly modeled by a few of proposed elements.
Thus, the present method is especially applicable for analysis of
the solids with many free shaped tubular holes.
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